• Title of article

    Toeplitz algebras on the disk ✩

  • Author/Authors

    Sheldon Axler، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    20
  • From page
    67
  • To page
    86
  • Abstract
    Let B be a Douglas algebra and let B be the algebra on the disk generated by the harmonic extensions of the functions in B. In this paper we show that B is generated by H∞(D) and the complex conjugates of the harmonic extensions of the interpolating Blaschke products invertible in B. Every element S in the Toeplitz algebra TB generated by Toeplitz operators (on the Bergman space) with symbols in B has a canonical decomposition S = TS˜ + R for some R in the commutator ideal CTB ; and S is in CTB iff the Berezin transform S˜ vanishes identically on the union of the maximal ideal space of the Douglas algebra B and the setM1 of trivial Gleason parts. © 2006 Elsevier Inc. All rights reserved.
  • Keywords
    Berezin transform , Toeplitz operator , Bergman space , Douglas algebra , Commutator ideal
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2007
  • Journal title
    Journal of Functional Analysis
  • Record number

    839313