• Title of article

    The weighted Monge–Ampère energy of quasiplurisubharmonic functions

  • Author/Authors

    Vincent Guedj ?، نويسنده , , Ahmed Zeriahi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    41
  • From page
    442
  • To page
    482
  • Abstract
    We study degenerate complex Monge–Ampère equations on a compact Kähler manifold (X,ω). We show that the complex Monge–Ampère operator (ω + ddc·)n is well defined on the class E(X,ω) of ω- plurisubharmonic functions with finite weighted Monge–Ampère energy. The class E(X,ω) is the largest class of ω-psh functions on which the Monge–Ampère operator is well defined and the comparison principle is valid. It contains several functions whose gradient is not square integrable.We give a complete description of the range of the operator (ω + ddc·)n on E(X,ω), as well as on some of its subclasses. We also study uniqueness properties, extending Calabi’s result to this unbounded and degenerate situation, and we give applications to complex dynamics and to the existence of singular Kähler–Einstein metrics. © 2007 Elsevier Inc. All rights reserved.
  • Keywords
    K?hler manifold , Complex Monge–Ampère operator , ?-Plurisubharmonic functions , weighted energy
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2007
  • Journal title
    Journal of Functional Analysis
  • Record number

    839458