Title of article :
On transitive algebras containing a standard finite von Neumann subalgebra
Author/Authors :
Junsheng Fang، نويسنده , , Don Hadwin، نويسنده , , Mohan Ravichandran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
22
From page :
581
To page :
602
Abstract :
Let M be a finite von Neumann algebra acting on a Hilbert space H and A be a transitive algebra containing M . In this paper we prove that if A is 2-fold transitive, then A is strongly dense in B(H). This implies that if a transitive algebra containing a standard finite von Neumann algebra (in the sense of [U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975) 271–283]) is 2-fold transitive, then A is strongly dense in B(H). Non-selfadjoint algebras related to free products of finite von Neumann algebras, e.g., LFn and (M2(C), 12 Tr) ∗ (M2(C), 12 Tr), are studied. Brown measures of certain operators in (M2(C), 12 Tr) ∗ (M2(C), 12 Tr) are explicitly computed. © 2007 Elsevier Inc. All rights reserved
Keywords :
Operator ranges , Hyperinvariant subspaces , Transitive algebras , Freeproducts , Standard finite von Neumann algebras , Brown measures , n-Fold transitive
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839507
Link To Document :
بازگشت