Title of article :
Uniform existence of the integrated density of states for
random Schrödinger operators on metric graphs over Zd
Author/Authors :
Michael J. Gruber، نويسنده , , Daniel H. Lenz، نويسنده , , Ivan Veseli´c، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
We consider ergodic random Schrödinger operators on the metric graph Zd with random potentials and
random boundary conditions taking values in a finite set.We show that normalized finite volume eigenvalue
counting functions converge to a limit uniformly in the energy variable. This limit, the integrated density
of states, can be expressed by a closed Shubin–Pastur type trace formula. It supports the spectrum and its
points of discontinuity are characterized by existence of compactly supported eigenfunctions. Among other
examples we discuss random magnetic fields and percolation models.
© 2007 Elsevier Inc. All rights reserved
Keywords :
Random Schr?dinger operator , Integrated density of states , Quantum graph , Metric graph
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis