• Title of article

    Uniform existence of the integrated density of states for random Schrödinger operators on metric graphs over Zd

  • Author/Authors

    Michael J. Gruber، نويسنده , , Daniel H. Lenz، نويسنده , , Ivan Veseli´c، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    19
  • From page
    515
  • To page
    533
  • Abstract
    We consider ergodic random Schrödinger operators on the metric graph Zd with random potentials and random boundary conditions taking values in a finite set.We show that normalized finite volume eigenvalue counting functions converge to a limit uniformly in the energy variable. This limit, the integrated density of states, can be expressed by a closed Shubin–Pastur type trace formula. It supports the spectrum and its points of discontinuity are characterized by existence of compactly supported eigenfunctions. Among other examples we discuss random magnetic fields and percolation models. © 2007 Elsevier Inc. All rights reserved
  • Keywords
    Random Schr?dinger operator , Integrated density of states , Quantum graph , Metric graph
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2007
  • Journal title
    Journal of Functional Analysis
  • Record number

    839532