Title of article :
Asymptotic structure and the existence of noncompact operators between Banach spaces ✩
Author/Authors :
O.V. Maslyuchenko، نويسنده , , V.V. Mykhaylyuk، نويسنده , , M.M. Popov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
550
To page :
560
Abstract :
We investigate the problem of the existence of a noncompact operator T : X0 ⊆ X →Y in terms of the asymptotic structure of separable Banach spaces X and Y . More precisely, for ξ = xi n1 ∈ {X}n and η = yi n1 ∈ {Y }n, let Tξ,η be the linear map which sends each xi to yi . We prove that if inf{ Tξ,η : ξ ∈ {X}n, η ∈ {Y }n} > 1 for some n ∈ N then every T : X0 ⊆ X→Y is compact. If for n = 2 all such maps have norm 1 we show the existence of a noncompact T : X0 ⊆ X→Y . © 2007 Elsevier Inc. All rights reserved.
Keywords :
nth asymptotic structure , Compact operator , Asymptotic- p space
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839534
Link To Document :
بازگشت