Title of article :
Improved Gagliardo–Nirenberg–Sobolev inequalities on manifolds with positive curvature
Author/Authors :
Jérôme Demange، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
19
From page :
593
To page :
611
Abstract :
We apply the method of [J. Demange, From porous media equation to generalized Sobolev inequalities on a Riemannian manifold, preprint, http://www.lsp.ups-tlse.fr/Fp/Demange/, 2004] and [J. Demange, Porous Media equation and Sobolev inequalities under negative curvature, preprint, http://www.lsp.upstlse. fr/Fp/Demange/, 2004], based on the curvature–dimension criterion and the study of Porous Media equation, to the case of a manifold M with strictly positive Ricci curvature. This gives a new way to prove classical Sobolev inequalities on M. Moreover, this enables to improve non-critical Sobolev inequalities as well. As an application, we study the rate of convergence of the solutions of the Porous Media equation to the equilibrium. © 2007 Elsevier Inc. All rights reserved.
Keywords :
Porous Media equation , Sobolev inequalities , Curvature–dimension criterion
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839561
Link To Document :
بازگشت