Title of article :
Values of the Pukánszky invariant in McDuff factors
Author/Authors :
Stuart White، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In 1960 Pukánszky introduced an invariant associating to every masa in a separable II1 factor a nonempty
subset of N ∪ {∞}. This invariant examines the multiplicity structure of the von Neumann algebra
generated by the left-right action of the masa. In this paper it is shown that any non-empty subset of N∪{∞} arises as the Pukánszky invariant of some masa in a separable McDuff II1 factor containing a masa with
Pukánszky invariant {1}. In particular the hyperfinite II1 factor and all separable McDuff II1 factors with a
Cartan masa satisfy this hypothesis. In a general separable McDuff II1 factor we show that every subset of
N ∪ {∞} containing∞is obtained as a Pukánszky invariant of some masa.
© 2007 Elsevier Inc. All rights reserved.
Keywords :
Puk?nszky invariant , Masa , McDuff factor , II1 factor
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis