Title of article :
Differential inequalities for Riesz means and Weyl-type
bounds for eigenvalues
Author/Authors :
Evans M. Harrell II، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the
Dirichlet Laplacian,
Rρ(z) := k
(z −λk)
ρ
+.
Here {λk}∞k =1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and
x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive
Weyl-type bounds on λk, on averages such as λk := 1
k k λ , and on the eigenvalue counting function.
For example, we prove that for all domains and all k j
1+d/2
1+d/4 ,
λk
λj
2 1+d/4
1+d/2 1+2/d k
j 2/d
.
Keywords :
Riesz means , Universal bounds , Laplacian , Dirichlet problem , Weyl law
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis