Title of article :
Absolute continuity of Wasserstein geodesics in the Heisenberg group
Author/Authors :
A. Figalli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
133
To page :
141
Abstract :
In this paper we answer to a question raised by Ambrosio and Rigot [L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2) (2004) 261–301] proving that any interior point of a Wasserstein geodesic in the Heisenberg group is absolutely continuous if one of the endpoints is. Since our proof relies on the validity of the so-called Measure Contraction Property and on the fact that the optimal transport map exists and the Wasserstein geodesic is unique, the absolute continuity of Wasserstein geodesic also holds for Alexandrov spaces with curvature bounded from below. © 2008 Elsevier Inc. All rights reserved
Keywords :
Optimal transport , Wasserstein geodesic , absolute continuity , Heisenberg group , Alexandrov spaces
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839659
Link To Document :
بازگشت