Title of article :
Inviscid limit for the energy-critical complex
Ginzburg–Landau equation
Author/Authors :
Chunyan Huang، نويسنده , , Baoxiang Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In this paper, we consider the limit behavior for the solution of the Cauchy problem of the energy-critical
complex Ginzburg–Landau equation in Rn, n 3. In lower dimension case (3 n 6), we show that its
solution converges to that of the energy-critical nonlinear Schrödinger equation in C(0, T ,H˙ s (Rn)),T >0,
s = 0, 1, as a by-product, we get the regularity of solutions in H3 for the nonlinear Schrödinger equation.
In higher dimension case (n>6), we get the similar convergent behavior in C(0,T,L2(Rn)). In both cases
we obtain the optimal convergent rate.
© 2008 Elsevier Inc. All rights reserved
Keywords :
Complex Ginzburg–Landau equation , Nonlinear Schr?dinger equation , Inviscid limit , Energy-critical power
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis