Title of article :
Mixed-norm estimates for a class of nonisotropic directional maximal operators and Hilbert transforms
Author/Authors :
Neal Bez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
22
From page :
3281
To page :
3302
Abstract :
For all d 2 and p ∈ (1,max(2, (d + 1)/2)], we prove sharp Lp to Lp(Lq ) estimates (modulo an endpoint) for a directional maximal operator associated to curves generated by the dilation matrices exp((log t)P), where P has real entries and eigenvalues with positive real part. For the corresponding Hilbert transform we prove an analogous result for all d 2 and p ∈ (1, 2]. As corollaries, we prove Lp bounds for variable kernel singular integral operators and Nikodym-type maximal operators taking averages over certain families of curved sets in Rd . © 2008 Elsevier Inc. All rights reserved
Keywords :
Maximal operator , Nonisotropic , Hilbert transform , Mixed-norm estimates
Journal title :
Journal of Functional Analysis
Serial Year :
2008
Journal title :
Journal of Functional Analysis
Record number :
839768
Link To Document :
بازگشت