Title of article
Separation and duality in locally L0-convex modules
Author/Authors
Damir Filipovi´c، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
34
From page
3996
To page
4029
Abstract
Motivated by financial applications, we study convex analysis for modules over the ordered ring L0
of random variables. We establish a module analogue of locally convex vector spaces, namely locally
L0-convex modules. In this context, we prove hyperplane separation theorems. We investigate continuity,
subdifferentiability and dual representations of Fenchel–Moreau type for L0-convex functions from
L0-modules into L0. Several examples and applications are given.
© 2008 Elsevier Inc. All rights reserved.
Keywords
L0-modules , Hahn–Banach extension , Hyperplane separation , Locally L0-convex modules , L0-convexfunctions , Lower semi continuity , subdifferentiability , Fenchel–Moreau duality
Journal title
Journal of Functional Analysis
Serial Year
2009
Journal title
Journal of Functional Analysis
Record number
839912
Link To Document