• Title of article

    Separation and duality in locally L0-convex modules

  • Author/Authors

    Damir Filipovi´c، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    34
  • From page
    3996
  • To page
    4029
  • Abstract
    Motivated by financial applications, we study convex analysis for modules over the ordered ring L0 of random variables. We establish a module analogue of locally convex vector spaces, namely locally L0-convex modules. In this context, we prove hyperplane separation theorems. We investigate continuity, subdifferentiability and dual representations of Fenchel–Moreau type for L0-convex functions from L0-modules into L0. Several examples and applications are given. © 2008 Elsevier Inc. All rights reserved.
  • Keywords
    L0-modules , Hahn–Banach extension , Hyperplane separation , Locally L0-convex modules , L0-convexfunctions , Lower semi continuity , subdifferentiability , Fenchel–Moreau duality
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2009
  • Journal title
    Journal of Functional Analysis
  • Record number

    839912