Title of article :
Separation and duality in locally L0-convex modules
Author/Authors :
Damir Filipovi´c، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Motivated by financial applications, we study convex analysis for modules over the ordered ring L0
of random variables. We establish a module analogue of locally convex vector spaces, namely locally
L0-convex modules. In this context, we prove hyperplane separation theorems. We investigate continuity,
subdifferentiability and dual representations of Fenchel–Moreau type for L0-convex functions from
L0-modules into L0. Several examples and applications are given.
© 2008 Elsevier Inc. All rights reserved.
Keywords :
L0-modules , Hahn–Banach extension , Hyperplane separation , Locally L0-convex modules , L0-convexfunctions , Lower semi continuity , subdifferentiability , Fenchel–Moreau duality
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis