Title of article :
Local minimizers of the Ginzburg–Landau functional with prescribed degrees
Author/Authors :
Mickaël Dos Santos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
39
From page :
1053
To page :
1091
Abstract :
We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg–Landau energy Eε(u) = 12 D|∇u|2 + 1 4ε2 D(1 − |u|2)2 subject to prescribed degree conditions on each component of ∂D. In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg– Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: Eε(u) has, in domains D with 2, 3, . . . holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control. © 2009 Elsevier Inc. All rights reserved.
Keywords :
Ginzburg–Landau functional , Prescribed degrees , local minimizers
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
839956
Link To Document :
بازگشت