• Title of article

    A duality principle for groups

  • Author/Authors

    Dorin Dutkay، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    11
  • From page
    1133
  • To page
    1143
  • Abstract
    The duality principle for Gabor frames states that a Gabor sequence obtained by a time–frequency lattice is a frame for L2(Rd ) if and only if the associated adjoint Gabor sequence is a Riesz sequence. We prove that this duality principle extends to any dual pairs of projective unitary representations of countable groups. We examine the existence problem of dual pairs and establish some connection with classification problems for II1 factors. While in general such a pair may not exist for some groups, we show that such a dual pair always exists for every subrepresentation of the left regular unitary representation when G is an abelian infinite countable group or an amenable ICC group. For free groups with finitely many generators, the existence problem of such a dual pair is equivalent to the well-known problem about the classification of free group von Neumann algebras. © 2009 Elsevier Inc. All rights reserved.
  • Keywords
    Bessel vectors , Duality principle , Group representations , von Neumann algebras , II1 factors , Frame vectors
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2009
  • Journal title
    Journal of Functional Analysis
  • Record number

    839958