Title of article :
Metric aspects of noncommutative homogeneous spaces
Author/Authors :
Hanfeng Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
26
From page :
2325
To page :
2350
Abstract :
For a closed cocompact subgroup Γ of a locally compact group G, given a compact abelian subgroup K of G and a homomorphism ρ :Kˆ →G satisfying certain conditions, Landstad and Raeburn constructed equivariant noncommutative deformations C∗(Gˆ /Γ, ρ) of the homogeneous space G/Γ , generalizing Rieffel’s construction of quantum Heisenberg manifolds. We show that when G is a Lie group and G/Γ is connected, given any norm on the Lie algebra of G, the seminorm on C∗(Gˆ /Γ, ρ) induced by the derivation map of the canonical G-action defines a compact quantum metric. Furthermore, it is shown that this compact quantum metric space depends on ρ continuously, with respect to quantum Gromov–Hausdorff distances. © 2009 Elsevier Inc. All rights reserved.
Keywords :
Compact quantum metric space , Noncommutative homogeneous space , Gromov–Hausdorff distance , quantum Heisenberg manifold
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
839997
Link To Document :
بازگشت