Title of article :
Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces
Author/Authors :
Jan Maas، نويسنده , , Jan van Neerven ?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
66
From page :
2410
To page :
2475
Abstract :
Let (E,H,μ) be an abstract Wiener space and let DV :=VD, where D denotes the Malliavin derivative and V is a closed and densely defined operator from H into another Hilbert space H. Given a bounded operator B on H, coercive on the range R(V ), we consider the operators A := V ∗BV in H and A := VV∗B in H, as well as the realisations of the operators L := D∗V BDV and L := DV D∗V B in Lp(E,μ) and Lp(E,μ;H) respectively, where 1
Keywords :
H?-functional calculus , R-boundedness , Divergence form elliptic operators , Hodge decomposition , Abstract Wiener spaces , Domain characterisationin Lp , Kato square root problem , Ornstein–Uhlenbeck operator , Second quantised operators , Meyer inequalities , Hodge–Dirac operators , Square function estimates , Riesz transforms
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
840000
بازگشت