• Title of article

    Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces

  • Author/Authors

    Jan Maas، نويسنده , , Jan van Neerven ?، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    66
  • From page
    2410
  • To page
    2475
  • Abstract
    Let (E,H,μ) be an abstract Wiener space and let DV :=VD, where D denotes the Malliavin derivative and V is a closed and densely defined operator from H into another Hilbert space H. Given a bounded operator B on H, coercive on the range R(V ), we consider the operators A := V ∗BV in H and A := VV∗B in H, as well as the realisations of the operators L := D∗V BDV and L := DV D∗V B in Lp(E,μ) and Lp(E,μ;H) respectively, where 1
  • Keywords
    H?-functional calculus , R-boundedness , Divergence form elliptic operators , Hodge decomposition , Abstract Wiener spaces , Domain characterisationin Lp , Kato square root problem , Ornstein–Uhlenbeck operator , Second quantised operators , Meyer inequalities , Hodge–Dirac operators , Square function estimates , Riesz transforms
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2009
  • Journal title
    Journal of Functional Analysis
  • Record number

    840000