Title of article :
Fixed point property for Banach algebras associated to locally compact groups
Author/Authors :
Anthony To-Ming Lau، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
357
To page :
372
Abstract :
In this paper we investigate when various Banach algebras associated to a locally compact group G have the weak or weak∗ fixed point property for left reversible semigroups. We proved, for example, that if G is a separable locally compact group with a compact neighborhood of the identity invariant under inner automorphisms, then the Fourier–Stieltjes algebra of G has the weak∗ fixed point property for left reversible semigroups if and only if G is compact. This generalizes a classical result of T.C. Lim for the case when G is the circle group T . © 2009 Elsevier Inc. All rights reserved
Keywords :
Group C?-algebra , Group von Neumann algebra , Weak? uniformKadec–Klee property , Weak? normal structure , Nonexpansive mapping , Left reversiblesemigroup , Fourier algebra , Commutative semigroup , Weak? fixed point property , Fourier–Stieltjes algebra
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840067
Link To Document :
بازگشت