Title of article :
Calderón–Zygmund operators on product Hardy spaces
Author/Authors :
Yongsheng Han، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
28
From page :
2834
To page :
2861
Abstract :
Let T be a product Calderón–Zygmund singular integral introduced by Journé. Using an elegant rectangle atomic decomposition of Hp(Rn × Rm) and Journé’s geometric covering lemma, R. Fefferman proved the remarkable Hp(Rn × Rm) − Lp(Rn × Rm) boundedness of T . In this paper we apply vector-valued singular integral, Calderón’s identity, Littlewood–Paley theory and the almost orthogonality together with Fefferman’s rectangle atomic decomposition and Journé’s covering lemma to show that T is bounded on product Hp(Rn × Rm) for max{ n n+ε , m m+ε } < p 1 if and only if T ∗ 1 (1) = T ∗ 2 (1) = 0, where ε is the regularity exponent of the kernel of T . © 2009 Elsevier Inc. All rights reserved
Keywords :
Calder?n–Zygmund operators , Journé’s class , Product Hardy spaces , Littlewood–Paley function
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840158
Link To Document :
بازگشت