Title of article :
Lp-independence of spectral bounds of Feynman–Kac
semigroups by continuous additive functionals
Author/Authors :
Giacomo De Leva، نويسنده , , Daehong Kim، نويسنده , , Kazuhiro Kuwae، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We establish conditions for the Lp-independence of spectral bounds of Feynman–Kac semigroup by continuous
additive functionals whose Revuz measures are smooth measures of Kato class having non-negative
order Green-tightness. Our continuous additive functionals do not necessarily admit bounded variation in
general. Examples of Cauchy principal value and Hilbert transform of Brownian local time, and for relativistic
symmetric stable processes are presented.
© 2010 Elsevier Inc. All rights reserved.
Keywords :
Irreducibility , Dirichlet forms , Absolute continuitycondition , Kato class , Local Kato class , Extended Kato class , Fellerproperty , Strong Feller property , Continuous additive functional of zero energy , Symmetric Markov processes , Feynman–Kac semigroup , Doubly Feller property
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis