Title of article :
Lp-independence of spectral bounds of Feynman–Kac semigroups by continuous additive functionals
Author/Authors :
Giacomo De Leva، نويسنده , , Daehong Kim، نويسنده , , Kazuhiro Kuwae، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
41
From page :
690
To page :
730
Abstract :
We establish conditions for the Lp-independence of spectral bounds of Feynman–Kac semigroup by continuous additive functionals whose Revuz measures are smooth measures of Kato class having non-negative order Green-tightness. Our continuous additive functionals do not necessarily admit bounded variation in general. Examples of Cauchy principal value and Hilbert transform of Brownian local time, and for relativistic symmetric stable processes are presented. © 2010 Elsevier Inc. All rights reserved.
Keywords :
Irreducibility , Dirichlet forms , Absolute continuitycondition , Kato class , Local Kato class , Extended Kato class , Fellerproperty , Strong Feller property , Continuous additive functional of zero energy , Symmetric Markov processes , Feynman–Kac semigroup , Doubly Feller property
Journal title :
Journal of Functional Analysis
Serial Year :
2010
Journal title :
Journal of Functional Analysis
Record number :
840243
Link To Document :
بازگشت