• Title of article

    Tracial algebras and an embedding theorem

  • Author/Authors

    Tim Netzer، نويسنده , , Andreas Thom، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    22
  • From page
    2939
  • To page
    2960
  • Abstract
    We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct of tracial ∗-algebras, which as ∗-algebras embed into a matrix-ring over a commutative algebra. © 2010 Elsevier Inc. All rights reserved
  • Keywords
    Ultraproduct , Connes embedding problem , Von Neumann algebra , Tracial algebras , Convex geometry
  • Journal title
    Journal of Functional Analysis
  • Serial Year
    2010
  • Journal title
    Journal of Functional Analysis
  • Record number

    840323