Title of article :
Tracial algebras and an embedding theorem
Author/Authors :
Tim Netzer، نويسنده , , Andreas Thom، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive
traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be
embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite
von Neumann algebra with separable pre-dual can be embedded into an ultraproduct of tracial ∗-algebras,
which as ∗-algebras embed into a matrix-ring over a commutative algebra.
© 2010 Elsevier Inc. All rights reserved
Keywords :
Ultraproduct , Connes embedding problem , Von Neumann algebra , Tracial algebras , Convex geometry
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis