Title of article :
Regularity of eigenstates in regular Mourre theory
Author/Authors :
Jacob S. M?ller، نويسنده , , Matthias Westrich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
27
From page :
852
To page :
878
Abstract :
The present paper gives an abstract method to prove that possibly embedded eigenstates of a self-adjoint operator H lie in the domain of the kth power of a conjugate operator A. Conjugate means here that H and A have a positive commutator locally near the relevant eigenvalue in the sense of Mourre. The only requirement is Ck+1(A) regularity of H. Regarding integer k, our result is optimal. Under a natural boundedness assumption of the multiple commutators we prove that the eigenstate ‘dilated’ by exp(iθA) is analytic in a strip around the real axis. In particular, the eigenstate is an analytic vector with respect to A. Natural applications are ‘dilation analytic’ systems satisfying a Mourre estimate, where our result can be viewed as an abstract version of a theorem due to Balslev and Combes (1971) [3]. As a new application we consider the massive Spin-Boson Model. © 2010 Elsevier Inc. All rights reserved.
Keywords :
Positive commutators , Analytic vectors , Dilation analyticity , Massive spin-boson model
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840363
Link To Document :
بازگشت