Title of article :
Power boundedness in Fourier and Fourier–Stieltjes algebras and other commutative Banach algebras
Author/Authors :
E. Kaniuth، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
21
From page :
2366
To page :
2386
Abstract :
We study power boundedness in the Fourier and Fourier–Stieltjes algebras, A(G) and B(G), of a locally compact group G as well as in some other commutative Banach algebras. The main results concern the question of when all elements with spectral radius at most one in any of these algebras are power bounded, the characterization of power bounded elements in A(G) and B(G) and also the structure of the Gelfand transform of a single power bounded element. © 2010 Elsevier Inc. All rights reserved.
Keywords :
Commutative Banach algebra , Structure space , Locally compact group , Power bounded element , Segal algebra , Fourier–Stieltjes algebra , Fourier algebra , dual algebra , Coset ring , Figà–Talamanca–Herz algebra
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840414
Link To Document :
بازگشت