Title of article
Perturbations and operator trace functions
Author/Authors
Walter D. van Suijlekom، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
14
From page
2483
To page
2496
Abstract
We study the spectral functional A → Trf (D + A) for a suitable function f , a self-adjoint operator
D having compact resolvent, and a certain class of bounded self-adjoint operators A. Such functionals
were introduce by Chamseddine and Connes in the context of noncommutative geometry. Motivated by
the physical applications of these functionals, we derive a Taylor expansion of them in terms of Gâteaux
derivatives. This involves divided differences of f evaluated on the spectrum of D, as well as the matrix
coefficients of A in an eigenbasis of D. This generalizes earlier results to infinite dimensions and to any
number of derivatives.
© 2010 Elsevier Inc. All rights reserved.
Keywords
perturbation theory , noncommutative geometry
Journal title
Journal of Functional Analysis
Serial Year
2011
Journal title
Journal of Functional Analysis
Record number
840419
Link To Document