Title of article :
The Bishop–Phelps–Bollobás theorem for operators from L1(μ) to Banach spaces with the Radon–Nikodým property ✩
Author/Authors :
Yun Sung Choi، نويسنده , , Sun Kwang Kim ?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
1446
To page :
1456
Abstract :
Let Y be a Banach space and (Ω,Σ,μ) be a σ-finite measure space, where Σ is an infinite σ-algebra of measurable subsets of Ω. We show that if the couple (L1(μ),Y ) has the Bishop–Phelps–Bollobás property for operators, then Y has the AHSP. Further, for a Banach space Y with the Radon–Nikodým property, we prove that the couple (L1(μ),Y ) has the Bishop–Phelps–Bollobás property for operators if and only if Y has the AHSP. © 2011 Elsevier Inc. All rights reserved.
Keywords :
Operator , Norm attaining , Bishop–Phelps theorem , Uniform convexity
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840524
Link To Document :
بازگشت