Title of article :
Multiple solutions for Neumann and periodic problems
with singular φ-Laplacian
Author/Authors :
Cristian Bereanu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
We use the critical point theory for convex, lower semicontinuous perturbations of C1-functionals to
establish existence of multiple radial solutions for some one parameter Neumann problems involving the
operator v → div( ∇v √1−|∇v|2 ). Similar results for periodic problems are also provided.
© 2011 Elsevier Inc. All rights reserved
Keywords :
neumann problem , periodic problem , Szulkin critical point theory , Palais–Smalecondition , Ekeland’s variational principle , Mountain Pass theorem , Concave and convex nonlinearities , Multiplicitynear resonance , Radial solutions
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis