Title of article :
Multiple solutions for Neumann and periodic problems with singular φ-Laplacian
Author/Authors :
Cristian Bereanu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
21
From page :
3226
To page :
3246
Abstract :
We use the critical point theory for convex, lower semicontinuous perturbations of C1-functionals to establish existence of multiple radial solutions for some one parameter Neumann problems involving the operator v → div( ∇v √1−|∇v|2 ). Similar results for periodic problems are also provided. © 2011 Elsevier Inc. All rights reserved
Keywords :
neumann problem , periodic problem , Szulkin critical point theory , Palais–Smalecondition , Ekeland’s variational principle , Mountain Pass theorem , Concave and convex nonlinearities , Multiplicitynear resonance , Radial solutions
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840584
Link To Document :
بازگشت