Title of article
The Radon transform on the Heisenberg group and the transversal Radon transform
Author/Authors
B. Rubin، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2012
Pages
39
From page
234
To page
272
Abstract
The Radon transform on the Heisenberg group was introduced by R. Strichartz. We regard it as a particular
case of a more general transversal Radon transform that integrates functions on Rm over hyperplanes
meeting the last coordinate axis. The paper contains new boundedness results and explicit inversion formulas
for both transforms of Lp functions in the full range of the parameter p. We also show that these
transforms are isomorphisms of the corresponding Semyanistyi–Lizorkin spaces of smooth functions. In
the framework of these spaces we obtain inversion formulas, which are pointwise analogues of the corresponding
formulas by R. Strichartz.
© 2011 Elsevier Inc. All rights reserved
Keywords
Semyanistyi–Lizorkin spaces1. IntroductionLet Hn = Cn ×R be the Heisenberg group with the multiplication law(z , inversion formulas , Heisenberg group , ? ) = z +? , t) ? (? , t +? ?12Im(z · ¯?) and letE-mail address: borisr@math.lsu.edu.0022-1236/$ , Radon transforms
Journal title
Journal of Functional Analysis
Serial Year
2012
Journal title
Journal of Functional Analysis
Record number
840611
Link To Document