Title of article :
Extremal maps in best constants vector theory. Part I: Duality and compactness
Author/Authors :
Ezequiel R. Barbosa، نويسنده , , Marcos Montenegro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
69
From page :
331
To page :
399
Abstract :
We develop a comprehensive study on sharp potential type Riemannian L2-Sobolev inequalities by means of a local geometric Sobolev inequality of the same kind and suitable De Giorgi–Nash–Moser estimates. In particular we discuss questions like continuous dependence of optimal constants and existence and compactness of extremal maps. The main obstacle arising in the present setting lies at fairly weak conditions of regularity assumed on potential functions. © 2011 Elsevier Inc. All rights reserved
Keywords :
De Giorgi–Nash–Moser estimates , Sharp Sobolev inequalities , Compactness , Extremal maps
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840614
Link To Document :
بازگشت