Title of article :
Positivity, decay, and extinction for a singular diffusion equation with gradient absorption
Author/Authors :
Razvan Gabriel Iagar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
54
From page :
3186
To page :
3239
Abstract :
We study qualitative properties of non-negative solutions to the Cauchy problem for the fast diffusion equation with gradient absorption ∂tu − pu + |∇u|q =0 in(0,∞)×RN, where N 1, p ∈ (1, 2), and q >0. Based on gradient estimates for the solutions, we classify the behavior of the solutions for large times, obtaining either positivity as t→∞forq >p−N/(N +1), optimal decay estimates as t→∞for p/2 q p−N/(N +1), or extinction in finite time for 0
Keywords :
Singular diffusion , Gradient absorption , Gradient estimates , Extinction , p-Laplacian , Viscosity solutions
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840704
بازگشت