Abstract :
We study qualitative properties of non-negative solutions to the Cauchy problem for the fast diffusion
equation with gradient absorption
∂tu − pu + |∇u|q =0 in(0,∞)×RN,
where N 1, p ∈ (1, 2), and q >0. Based on gradient estimates for the solutions, we classify the behavior
of the solutions for large times, obtaining either positivity as t→∞forq >p−N/(N +1), optimal decay
estimates as t→∞for p/2 q p−N/(N +1), or extinction in finite time for 0
Keywords :
Singular diffusion , Gradient absorption , Gradient estimates , Extinction , p-Laplacian , Viscosity solutions
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis