Title of article :
Hua operators, Poisson transform and relative discrete series on line bundles over bounded symmetric domains
Author/Authors :
Khalid Koufany، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
20
From page :
4140
To page :
4159
Abstract :
For bounded symmetric domains Ω = G/K of tube type and general domains of type I, we consider the action of G on sections of a homogeneous line bundle over Ω and the corresponding eigenspaces of G-invariant differential operators. The Poisson transform maps hyperfunctions on the Shilov boundary S = K/L to the eigenspaces.We characterize the image in terms of twisted Hua operators. For some special parameters the Poisson transform is of Szegö type whose image is in a relative discrete series; we compute the corresponding elements in the discrete series. © 2012 Elsevier Inc. All rights reserved
Keywords :
Invariant differential operators , Poissontransform , Hua operators , Bounded symmetric domains , eigenfunctions , Shilov boundary
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840734
Link To Document :
بازگشت