Title of article :
Hua operators, Poisson transform and relative discrete
series on line bundles over bounded symmetric
domains
Author/Authors :
Khalid Koufany، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
For bounded symmetric domains Ω = G/K of tube type and general domains of type I, we consider
the action of G on sections of a homogeneous line bundle over Ω and the corresponding eigenspaces
of G-invariant differential operators. The Poisson transform maps hyperfunctions on the Shilov boundary
S = K/L to the eigenspaces.We characterize the image in terms of twisted Hua operators. For some special
parameters the Poisson transform is of Szegö type whose image is in a relative discrete series; we compute
the corresponding elements in the discrete series.
© 2012 Elsevier Inc. All rights reserved
Keywords :
Invariant differential operators , Poissontransform , Hua operators , Bounded symmetric domains , eigenfunctions , Shilov boundary
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis