Title of article :
Smoothness of the Beurling transform in Lipschitz domains ✩
Author/Authors :
Victor Cruz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
35
From page :
4423
To page :
4457
Abstract :
Let Ω ⊂ C be a Lipschitz domain and consider the Beurling transform of χΩ: BχΩ(z) = lim ε→0 −1 π w∈Ω,|z−w|>ε 1 (z − w)2 dm(w). Let 1 1. In this paper we show that if the outward unit normal N on ∂Ω belongs to the Besov space B α−1/p p,p (∂Ω), then BχΩ is in the Sobolev space Wα,p(Ω). This result is sharp. Further, together with recent results by Cruz, Mateu and Orobitg, this implies that the Beurling transform is bounded in Wα,p(Ω) if N belongs to B α−1/p p,p (∂Ω), assuming that αp > 2. © 2012 Elsevier Inc. All rights reserved.
Keywords :
Beurling transform , Sobolev spaces , Lipschitz domains
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840742
Link To Document :
بازگشت