Title of article :
Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles
Author/Authors :
Sun-Sig Byun ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
27
From page :
3117
To page :
3143
Abstract :
We consider a nonhomogeneous elliptic problem with an irregular obstacle involving a discontinuous nonlinearity over an irregular domain in divergence form of p-Laplacian type, to establish the global Calderón–Zygmund estimate by proving that the gradient of the weak solution is as integrable as both the gradient of the obstacle and the nonhomogeneous term under the BMO smallness of the nonlinearity and sufficient flatness of the boundary in the Reifenberg sense. © 2012 Elsevier Inc. All rights reserved
Keywords :
Irregular obstacle , Calder?n–Zygmund estimate , Discontinuous nonlinearity , p-Laplacian , BMO , Reifenberg domain
Journal title :
Journal of Functional Analysis
Serial Year :
2012
Journal title :
Journal of Functional Analysis
Record number :
840870
Link To Document :
بازگشت