Title of article :
A FINITENESS CONDITION ON THE COEFFICIENTS OF THE PROBABILISTIC ZETA FUNCTION
Author/Authors :
لوكيني، آندريا نويسنده Dipartimento di Matematica, Universita degli studi di Padova, Via Trieste 63, 35121 Padova, Italy Lucchini, Andrea , سرگين، دونگ هوانگ نويسنده Mathematisch Instituut, Leiden Universiteit, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands Dung, Duong Hoang
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2013
Pages :
8
From page :
167
To page :
174
Abstract :
We discuss whether finiteness properties of a profinite group G can be deduced from the coeffcients of the probabilistic zeta function PG(s). In particular we prove that if PG(s) is rational and all but finitely many non abelian composition factors of G are isomorphic to PSL(2; p) for some prime p, then G contains only finitely many maximal subgroups.
Journal title :
International Journal of Group Theory
Serial Year :
2013
Journal title :
International Journal of Group Theory
Record number :
842103
Link To Document :
بازگشت