Title of article :
NEW SKEW LAPLACIAN ENERGY OF SIMPLE DIGRAPHS
Author/Authors :
لي ، ايكسوليانگ نويسنده Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China Li, Xueliang , كاي ، كينگ كيونگ نويسنده Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China Cai, Qingqiong , سونگ، جيانگ لي نويسنده Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China Song, Jiangli
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2013
Pages :
11
From page :
27
To page :
37
Abstract :
For a simple digraph G of order n with vertex set fv1; v2; : : : ; vng, let d+ i and d??i denote the out-degree and in-degree of a vertex vi in G, respectively. Let D+(G) = diag(d+ 1 ; d+ 2 ; : : : ; d+ n ) and D??(G) = diag(d??1 ; d??2 ; : : : ; d??n ). In this paper we introduce fSL(G) = eD(G)??S(G) to be a new kind of skew Laplacian matrix of G, where eD(G) = D+(G) ?? D??(G) and S(G) is the skew-adjacency matrix of G, and from which we define the skew Laplacian energy SLE(G) of G as the sum of the norms of all the eigenvalues of fSL(G). Some lower and upper bounds of the new skew Laplacian energy are derived and the digraphs attaining these bounds are also determined.
Journal title :
Transactions on Combinatorics
Serial Year :
2013
Journal title :
Transactions on Combinatorics
Record number :
842149
Link To Document :
بازگشت