Title of article :
Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode
Author/Authors :
Okabe، Satoshi نويسنده , , Satoh، Hisashi نويسنده , , Watanabe، Yoshimasa نويسنده , , Yamaguchi، Yuki نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-2205
From page :
2206
To page :
0
Abstract :
Three rotating disk biofilm reactors were operated to evaluate whether bioaugmentation and biostimulation can be used to improve the start-up of microbial nitrification. The first reactor was bioaugmented during start-up period with an enrichment culture of nitrifying bacteria, the second reactor received a synthetic medium containing NH4+ and NO2- to facilitate concomitant proliferation of ammonia- and nitrite-oxidizing bacteria, and the third reactor was used as a control. To evaluate the effectiveness of bioaugmentation and biostimulation approaches, time-dependent developments of nitrifying bacterial community and in situ nitrifying activity in biofilms were monitored by fluorescence in situ hybridization (FISH) technique and microelectrode measurements of NH4+, NO2-, NO3-, and O2. In situ hybridization results revealed that addition of the enrichment culture of nitrifying bacteria significantly facilitated development of dense nitrifying bacterial populations in the biofilm shortly after, which led to a rapid start-up and enhancement of in situ nitrification activity. The inoculated bacteria could proliferate and/or survive in the biofilm. In addition, the addition of nitrifying bacteria increased the abundance of nitrifying bacteria in the surface of the biofilm, resulting in the higher nitrification rate. On the other hand, the addition of 2.1 mM NO2- did not stimulate the growth of nitrite-oxidizing bacteria and did inhibit the proliferation of ammonia-oxidizing bacteria instead. Thus, the start-up of NO2- oxidation was unchanged, and the start-up of NH4+ oxidation was delayed. In all the three biofilm reactors, data sets of time series analyses on population dynamics of nitrifying bacteria determined by FISH, in situ nitrifying activities determined by microelectrode measurements, and the reactor performances revealed an approximate agreement between the appearance of nitrifying bacteria and the initiation of nitrification activity, suggesting that the combination of these techniques was a very powerful monitoring tool to evaluate the effectiveness of bioaugmentation and biostimulation strategies.
Keywords :
Start-up of nitrification , bioaugmentation , FISH , microelectrodes , Biostimulation
Journal title :
Water Research
Serial Year :
2003
Journal title :
Water Research
Record number :
84479
Link To Document :
بازگشت