Title of article :
Laguerre Expansions of Gel′fand-Shilov Spaces Original Research Article
Author/Authors :
A.J. Duran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
21
From page :
280
To page :
300
Abstract :
The subspaces Gα, Gβ, and Gβα (α, β ≥ 0)of Schwartz′ space S+ in (0, + ∞) are associated with the Hankel transform in the same way as the Gel′fand-Shilov spaces Sα, Sβ, and Sβα are associated with the Fourier transform. Indeed, if we consider the Hankel transform Hγ (γ < −1) defined by Hγ(ƒ)(t) = 12∫∞0 (xt)−γ/2xγJγ([formula]) ƒ(x) dx then Hγ is an isomorphism from Gα, Gβ, and Gβα onto Gα, Gβ, and Gαβ respectively. So. the spaces Gαα are invariant for Hγ. In this paper, we characterize the spaces Gαα (α > 1) in terms of their Fourier-Laguerre coefficients. Also, we characterize the range of the Fourier-Laplace operator FD defined by FD(ƒ)(w) = ∫∞0 ƒ(t) e−(1/2)((1 + w)/(1 − w))t for w ∈ D = {w ∈ C : |w| ≤ 1} when it acts on the space Gαα.
Journal title :
Journal of Approximation Theory
Serial Year :
1993
Journal title :
Journal of Approximation Theory
Record number :
851074
Link To Document :
بازگشت