Title of article :
Average Width and Optimal Interpolation of the Sobolev-Wiener Class Wrpq(R) in the Metric Lq(R) Original Research Article
Author/Authors :
G.S. Fang، نويسنده , , Y.P. Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Pages :
18
From page :
335
To page :
352
Abstract :
In this paper, we determine the exact value of average n − K width dn(Wrpq(R), Lq(R)) of Sobolev-Wiener class Wrpq(R) in the metric Lq(R) for 1 > q ≥ p > ∞ and get the value of dn(Wrp(R), Lqp(R)) for the dual case. We also solve the optimal interpolation problems of Wrpq(R) in the metric Lq(R) and Wrp(R) in the metric Lqp(R) for 1 < q ≤ p < ∞.
Journal title :
Journal of Approximation Theory
Serial Year :
1993
Journal title :
Journal of Approximation Theory
Record number :
851076
Link To Document :
بازگشت