Title of article :
Sobolev Orthogonal Polynomials with a Small Number of Real Zeros Original Research Article
Author/Authors :
H.G. Meijer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
9
From page :
305
To page :
313
Abstract :
Let {Sλn} denote a set of polynomials orthogonal with respect to the Sobolev inner product 〈f, g 〉 = ∫3−1f(x) g(x) dx + λ ∫1−1) f′(x) g′(x) dx + ∫31f′(x) g′(x) dx, where λ ≥ 0. If n is odd and λ sufficiently large, then Sλn has exactly one real zero. If n is even, n ≥ 2, and λ sufficiently large, then Sλn has exactly two real zeros. This result can be generalized to a more general inner product.
Journal title :
Journal of Approximation Theory
Serial Year :
1994
Journal title :
Journal of Approximation Theory
Record number :
851155
Link To Document :
بازگشت