Title of article :
Markov Inequalities for Weight Functions of Chebyshev Type Original Research Article
Author/Authors :
D.K. Dimitrov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
7
From page :
175
To page :
181
Abstract :
Denote by ηi=cos(iπ/n), i = 0, ..., n the extreme points of the Chebyshev polynomial Tn(x) = cos(n arc cos x). Let πn be the set of real algebraic polynomials of degree not exceeding n, and let Bn be the unit ball in the space πn equipped with the discrete norm |p|n,∞ ≔ max0 ≤ i ≤ n|p(ηi)|. We prove that the unique solutions of the extremal problems maxp ∈ Bn ∫1−1 [p(k + 1)(x)]2(1 − x2)k − 1/2dx, k = 0, ..., n − 1, and maxp ∈ Bn ∫1− 1[p(k + 2)(x)]2(1 − x2)k − 1/2dx, k = 0, ..., n − 2, are p(x) = ±Tn(x), and we obtain the extremal values in an explicit form.
Journal title :
Journal of Approximation Theory
Serial Year :
1995
Journal title :
Journal of Approximation Theory
Record number :
851337
Link To Document :
بازگشت