Title of article :
New Characterizations of Discrete Classical Orthogonal Polynomials Original Research Article
Author/Authors :
K.H. Kwon، نويسنده , , D.W. Lee، نويسنده , , S.B. Park، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
16
From page :
156
To page :
171
Abstract :
We prove that if both {Pn(x)}∞n=0and {∇r Pn(x)}∞n=rare orthogonal polynomials for any fixed integer r⩾1, then {Pn(x)}∞n=0must be discrete classical orthogonal polynomials. This result is a discrete version of the classical Hahnʹs theorem stating that if both {Pn(x)}∞n=0and {(d/dx)r Pn(x)}∞n=rare orthogonal polynomials, then {Pn(x)}∞n=0are classical orthogonal polynomials. We also obtain several other characterizations of discrete classical orthogonal polynomials.
Journal title :
Journal of Approximation Theory
Serial Year :
1997
Journal title :
Journal of Approximation Theory
Record number :
851478
Link To Document :
بازگشت