Title of article :
Convergence of Rational Interpolants with Preassigned Poles Original Research Article
Author/Authors :
Amiran Ambroladze، نويسنده , , Hans Wallin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
19
From page :
238
To page :
256
Abstract :
We study the following problem. Given a domainΩcontaining infinity, is it possible to choose a sequence of polynomialsQn,n=1, 2, ..., whereQnhas degreen, so that the following condition holds: if a functionfis analytic inΩandPnis the polynomial part of the Laurent expansion ofQnfat infinity, thenPn/Qnconverges tof, asntends to infinity, uniformly on bounded closed subsets ofΩ? We get a complete solution of this problem whenΩis regular for Dirichletʹs problem. For irregular domains we obtain some results having independent interest but a main problem remains open: is it possible to find such polynomialsQnfor some irregular domainsΩ?
Journal title :
Journal of Approximation Theory
Serial Year :
1997
Journal title :
Journal of Approximation Theory
Record number :
851483
Link To Document :
بازگشت