Title of article :
Semiclassical Multiple Orthogonal Polynomials and the Properties of Jacobi–Bessel Polynomials Original Research Article
Author/Authors :
A.I. Aptekarev، نويسنده , , F. Marcellan، نويسنده , , I.A. Rocha، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
30
From page :
117
To page :
146
Abstract :
This paper deals with Hermite–Padé polynomials in the case where the multiple orthogonality condition is related to semiclassical functionals. The polynomials, introduced in such a way, are a generalization of classical orthogonal polynomials (Jacobi, Laguerre, Hermite, and Bessel polynomials). They satisfy a Rodrigues type formula and an (s+2)-order differential equation, wheresis the class of the semiclassical functional. A special case of polynomials, multiple orthogonal with respect to the semiclassical weight functionw(x)=xα0(x−a)α1 eγ/x(a combination of the classical weights of Jacobi and Bessel), is analyzed in order to obtain the strong (Szegő type) asymptotics and the zero distribution.
Journal title :
Journal of Approximation Theory
Serial Year :
1997
Journal title :
Journal of Approximation Theory
Record number :
851499
Link To Document :
بازگشت