Title of article :
Notes on Steklovʹs Conjecture inLpand on Divergence of Lagrange Interpolation inLp
Author/Authors :
Paul Nevai، نويسنده , , Ying Guang Shi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
6
From page :
147
To page :
152
Abstract :
Given a compact intervalΔ, it is shown that for E. A. Rakhmanovʹs weightwonΔwhich is bounded from below by the Chebyshev weightvonΔ(1982,Math. USSR Sb.42, 263) the corresponding orthonormal polynomials are unbounded in everyLpv(andLpw) withp>2 and also that the Lagrange interpolation process based on their zeros diverges in everyLpvwithp>2 for some continuousf. This yields an affirmative answer to Conjecture 2.9 in“Research Problems in Orthogonal Polynomials” (1989,in“Approximation Theory, VI,” Vol. 2, p. 454; (C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), Academic Press, New York) a positive answer to Problem 8, and a negative answer to Problem 10 of P. Turán (1980,J. Approx. Theory29, 32–33).
Journal title :
Journal of Approximation Theory
Serial Year :
1997
Journal title :
Journal of Approximation Theory
Record number :
851500
Link To Document :
بازگشت