Title of article :
Asymptotics of Diagonal Hermite–Padé Approximants toez Original Research Article
Author/Authors :
F. Wielonsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
16
From page :
283
To page :
298
Abstract :
Letmbe a fixed positive integer. We consider Hermite–Padé approximants to the exponential functionR(z)=∑p=0m Ap(z) epz=O(z^mn+n−1),where the degree of the polynomialsAp, 0⩽p⩽m, is less thann. Asn→∞, exact asymptotics for theApʹs and the remainder termR, along with an upper bound on the zeros of the polynomialsAp, are given. These asymptotics show that shifted Hermite–Padé approximants asymptotically minimize exponential polynomials of the above form on a disk {|z|⩽ρ}, providedρdoes not exceedπ/m. These results generalize some of those obtained by Borwein (Const. Approx.2(1986), 291–302) on quadratic Hermite–Padé approximants.
Journal title :
Journal of Approximation Theory
Serial Year :
1997
Journal title :
Journal of Approximation Theory
Record number :
851507
Link To Document :
بازگشت