Title of article
Zolotarevω-Polynomials inWrHω[0, 1] Original Research Article
Author/Authors
Sergey K. Bagdasarov، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1997
Pages
39
From page
340
To page
378
Abstract
The main result of this paper characterizes generalizationsof Zolotarev polynomials as extremal functions in the Kolmogorov–Landauproblemf(m)(0)→sup,f∈WrHω[0, 1], ‖f‖C[0, 1]⩽B, ((★))whereω(t) is a concave modulus of continuity,r, m: 1⩽m⩽r,are integers, andB⩾B0(r, m, ω). We show that theextremal functionsZBhaver+1 points of alternance andthe full modulus of continuity ofZ(r)B: ω(Z(r)B; t)=ω(t) for allt∈[0, 1]. This generalizesthe Karlinʹs result on the extremality of classical Zolotarevpolynomials in the problem (★) forω(t)=tand allB⩾Br.
Journal title
Journal of Approximation Theory
Serial Year
1997
Journal title
Journal of Approximation Theory
Record number
851510
Link To Document