Title of article :
On the Domain of Convergence and Poles of ComplexJ-Fractions Original Research Article
Author/Authors :
D Barrios Rolan??a، نويسنده , , G L?pez Lagomasino، نويسنده , , A Mart??nez Finkelshtein، نويسنده , , E Torrano Giménez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
Consider the infiniteJ-fraction [formula] wherean∈C\{0},bn∈C. Under very general conditions on the coefficients {an}, {bn}, we prove that this continued fraction converges to a meromorphic function in C\R. Such conditions hold, in particular, if limn J(an)=limn J(bn)=0 and ∑n⩾0 (1/|an|)=∞ (or ∑n⩾0 (|bn|/|anan+1|)=∞). The poles are located in the point spectrum of the associated tridiagonal infinite matrix and their order determined in terms of the asymptotic behavior of the zeros of the denominators of the corresponding partial fractions.
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory