Title of article :
On the Positivity of the Fundamental Polynomials for Generalized Hermite–Fejér Interpolation on the Chebyshev Nodes Original Research Article
Author/Authors :
Simon J. Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
7
From page :
338
To page :
344
Abstract :
It is shown that the fundamental polynomials for (0, 1, …, 2m+1) Hermite–Fejér interpolation on the zeros of the Chebyshev polynomials of the first kind are non-negative for −1⩽x⩽1, thereby generalising a well-known property of the original Hermite–Fejér interpolation method. As an application of the result, Korovkinʹs 10theorem on monotone operators is used to present a new proof that the (0, 1, …, 2m+1) Hermite–Fejér interpolation polynomials off∈C[−1, 1], based onnChebyshev nodes, converge uniformly tofasn→∞.
Journal title :
Journal of Approximation Theory
Serial Year :
1999
Journal title :
Journal of Approximation Theory
Record number :
851662
Link To Document :
بازگشت