Title of article :
Strong Convergence of Averaged Approximants for Asymptotically Nonexpansive Mappings in Banach Spaces Original Research Article
Author/Authors :
Naoki Shioji، نويسنده , , Wataru Takahashi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
12
From page :
53
To page :
64
Abstract :
LetCbe a closed, convex subset of a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable and letTbe an asymptotically nonexpansive mapping fromCinto itself such that the setF(T) of fixed points ofTis nonempty. In this paper, we show thatF(T) is a sunny, nonexpansive retract ofC. Using this result, we discuss the strong convergence of the sequence {xn} defined byxn=anx+(1−an) 1/(n+1) ∑nj=0 Tjxnforn=0, 1, 2, …, wherex∈Cand {an} is a real sequence in (0, 1].
Journal title :
Journal of Approximation Theory
Serial Year :
1999
Journal title :
Journal of Approximation Theory
Record number :
851672
Link To Document :
بازگشت