Title of article :
A Corner Point Gibbs Phenomenon for Fourier Series in Two Dimensions Original Research Article
Author/Authors :
Gilbert Helmberg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
43
From page :
1
To page :
43
Abstract :
Letfbe the function periodic with period 2πinxandywhich extends the indicator function of the parallelogramA={(x, y): 0⩽y⩽π, y/c⩽x⩽y/c+π} (0≠c∈R). The partial sums of the Fourier series offof order 2M+1, say, evaluated at (πx/(2M+1), πy/(2M+1)), converge forM→∞ to a sum of integrals of the functions sin t/t, sin s/s sin t/t, cos s/s cos t/tover domains depending onx y, andc. This limit appears to depend only on the part ofAinside an arbitrarily small circle about 0.
Journal title :
Journal of Approximation Theory
Serial Year :
1999
Journal title :
Journal of Approximation Theory
Record number :
851730
Link To Document :
بازگشت