Title of article :
Asymptotic Behavior of Sobolev-Type Orthogonal Polynomials on the Unit Circle Original Research Article
Author/Authors :
Ana Foulquié Moreno، نويسنده , , Francisco Marcell?n، نويسنده , , K. Pan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
19
From page :
345
To page :
363
Abstract :
We study the asymptotic behavior of the sequence of polynomials orthogonal with respect to the discrete Sobolev inner product on the unit circle〈f, g〉=∫ f(eiθ) g(eiθ) dμ(θ)+f(Z) Ag(Z)H, where f(Z)=(f(z1), …, f(l1)(z1), …, f(zm), …, f(lm)(zm)), A is a M×M positive definite matrix or a positive semidefinite diagonal block matrix, M=l1+…+lm+m, dμ belongs to a certain class of measures, and |zi|>1, i=1, 2, …, m.
Journal title :
Journal of Approximation Theory
Serial Year :
1999
Journal title :
Journal of Approximation Theory
Record number :
851746
Link To Document :
بازگشت