Title of article :
Metric Entropy of Integration Operators and Small Ball Probabilities for the Brownian Sheet Original Research Article
Author/Authors :
T Dunker، نويسنده , , W Linde، نويسنده , , T Kühn، نويسنده , , M.A Lifshits، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
15
From page :
63
To page :
77
Abstract :
Let Td: L2([0, 1]d)→C([0, 1]d) be the d-dimensional integration operator. We show that its Kolmogorov and entropy numbers decrease with order at least k−1(log k)d−1/2. From this we derive that the small ball probabilities of the Brownian sheet on [0, 1]d under the C([0, 1]d)-norm can be estimated from below by exp(−Cε−2 |log ε|2d−1), which improves the best known lower bounds considerably. We also get similar results with respect to certain Orlicz norms.
Journal title :
Journal of Approximation Theory
Serial Year :
1999
Journal title :
Journal of Approximation Theory
Record number :
851752
Link To Document :
بازگشت